中华眼底病杂志

中华眼底病杂志

阈值下微脉冲激光光凝治疗黄斑疾病的研究现状和进展

查看全文

阈值下微脉冲激光作为一种安全、非侵入性的激光对多种眼底黄斑疾病均有疗效而广泛应用于临床。相比于传统激光,阈值下微脉冲激光光凝选择性作用于RPE细胞,对视网膜的损伤降至最低的亚损伤程度并具有明显的疗效。探讨阈值下微脉冲激光光凝治疗机制、对多种常见黄斑疾病的疗效及安全性及其发展,进一步明确阈值下微脉冲激光治疗的适应证与优势,有助于其在临床上更广泛的应用。

The threshold micropulse laser is widely used in clinical practice as a safe, non-invasive laser for avariety of macular diseases. Compared with the conventional laser therapy, the subthreshold micropulse laser is selectively absorbed by the RPE and therefore it does not cause retinal damage. To explore the therapeutic mechanism and the safety, development of threshold micropulse laser in the treatment of various common macular diseases, and further clarify its indications and advantages, which are helpful for its wider clinical application.

关键词: 激光凝固术; 黄斑疾病; 综述

Key words: Laser coagulation; Macular diseases; Review

引用本文: 连海燕, 陈晓, 闫明, 宋艳萍. 阈值下微脉冲激光光凝治疗黄斑疾病的研究现状和进展. 中华眼底病杂志, 2019, 35(2): 206-210. doi: 10.3760/cma.j.issn.1005-1015.2019.02.020 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Morgan CM, Schatz H. Atrophic creep of the retinal pigment epithelium after focal macular photocoagulation[J]. Ophthalmology, 1989, 96(1): 96-103. DOI: 10.1016/S0161-6420(89)32924-1.
2. Mcdonald HR, Schatz H. Visual loss following panretinal photocoagulation for proliferative diabetic retinopathy[J]. Ophthalmology, 1985, 92(3): 388-393. DOI: 10.1016/S0161-6420(85)34016-2.
3. Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation[J]. Proc Soc Photo Opt Instrum Eng, 1990, 1202: 205-213.
4. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801. DOI: 10.1016/j.ophtha.2011.12.039.
5. Kwon YH, Lee DK, Kwon OW. The Short-term efficacy of subthreshold Micropulse yellow (577-nm) laser photocoagulation for diabetic macular edema[J]. Korean J Ophthalmol, 2014, 28(5): 379-385. DOI: 10.3341/kjo.2014.28.5.379.
6. Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization[J]. J Cell Physiol, 2001, 188(2): 253-263. DOI: 10.1002/jcp.1114.
7. Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL].J Ophthalmol, 2015, 2015: 729792[2015-11-30]. http://dx.doi.org/10.1155/2015/729792. DOI: 10.1155/2015/729792.
8. Wang J, Quan Y, Dalal R, et al. Comparison of continuous-wave and micropulse modulation in retinal laser therapy[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4722-4732. DOI: 10.1167/iovs.17-21610.
9. Yu DY, Cringle SJ, Su E, et al. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits[J]. Invest Ophthalmol Vis Sci, 2005, 46(3): 988-999. DOI: 10.1167/iovs.04-0767.
10. Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
11. Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser[J]. Ophthalmology, 1997, 104(12): 2030-2038. DOI: 10.1016/S0161-6420(97)30061-X.
12. Ohkoshi K, Tsuiki E, Kitaoka T, et al. Visualization of subthreshold micropulse diode laser photocoagulation by scanning laser ophthalmoscopy in the retro mode[J]. Am J Ophthalmol, 2010, 150(6): 856-862. DOI: 10.1016/j.ajo.2010.06.022.
13. Desmettre TJ, Mordon SR, Buzawa DM, et al. Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters[J]. Br J Ophthalmol, 2006, 90(6): 709-712. DOI: 10.1136/bjo.2005.086942.
14. Luttrull JK, Sramek C, Palanker D, et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema[J]. Retina, 2012, 32(2): 375-386. DOI: 10.1097/IAE.0b013e3182206f6c.
15. Laursen ML, Moeller F, Sander B, et al. Subthreshold micropulse diode laser treatment in diabetic macular oedema[J]. Br J Ophthalmol, 2004, 88(9): 1173-1179. DOI: 10.1136/bjo.2003.040949.
16. Lavinsky D, Cardillo JA, Melo LA Jr, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4314-4323. DOI: 10.1167/iovs.10-6828.
17. Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J]. Br J Ophthalmol, 2009, 93(10): 1341-1344. DOI: 10.1136/bjo.2008.146712.
18. Fazel F, Bagheri M, Golabchi K, et al. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema[J]. J Curr Ophthalmol, 2016, 28(4): 206-211. DOI: 10.1016/j.joco.2016.08.007.
19. Venkatesh P, Ramanjulu R, Azad R, et al. Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography[J]. Photomed Laser Surg, 2011, 29(11): 727-733. DOI: 10.1089/pho.2010.2830.
20. Vujosevic S, Martini F, Longhin E, et al. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety[J]. Retina, 2015, 35(8): 1594-1603. DOI: 10.1097/IAE.0000000000000521.
21. Inagaki K, Ohkoshi K, Ohde S, et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561-577-nm) direct photocoagulation for diabetic macular edema[J]. Jpn J Ophthalmol, 2015, 59(1): 21-28. DOI: 10.1007/s10384-014-0361-1.
22. Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. DOI: 10.5301/ejo.5001000.
23. Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness[J]. Eye (Lond), 2014, 28(12): 1418-1424. DOI: 10.1038/eye.2014.264.
24. Citirik M. The impact of central foveal thickness on the efficacy of subthreshold micropulse yellow laser photocoagulation in diabetic macular edema[J/OL]. Lasers Med Sci, 2018, 2018: E1[2018-10-27]. DOI: 10.1007/s10103-018-2672-9. [published online ahead of print].
25. Vujosevic S, Martini F, Convento E, et al. Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues[J]. Curr Med Chem, 2013, 20(26): 3267-3271. DOI: 10.2174/09298673113209990030.
26. Elhamid AHA. Combined intravitreal dexamethasone implant and micropulse yellow laser for treatment of anti-VEGF resistant diabetic macular edema[J]. Open Ophthalmol J, 2017, 11: 164-172. DOI: 10.2174/1874364101711010164.
27. Parodi MB, Spasse S, Iacono P, et al. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser[J]. Ophthalmology, 2006, 113(12): 2237-2242. DOI: 10.1016/j.ophtha.2006.05.056.
28. Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study[J]. Br J Ophthalmol, 2008, 92(8): 1046-1050. DOI: 10.1136/bjo.2007.128025.
29. Inagaki K, Ohkoshi K, Ohde S, et al. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40[J/OL]. J Ophthalmol, 2014, 2014: 251257[2014-09-04]. http://dx.doi.org/10.1155/2014/251257. DOI: 10.1155/2014/251257.
30. Parodi MB, Iacono P, Bandello F. Subthreshold grid laser versus intravitreal bevacizumab as second-line therapy for macular edema in branch retinal vein occlusion recurring after conventional grid laser treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(10): 1647-1651. DOI: 10.1007/s00417-014-2845-6.
31. Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome[J]. JAMA Ophthalmol, 2014, 132(1): 13-22. DOI: 10.1001/jamaophthalmol.2013.5515.
32. Breukink MB, Downes SM, Querques G, et al. Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial[J]. Trials, 2015, 16: 419. DOI: 10.1186/s13063-015-0939-z.
33. Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy[J]. Eye (Lond), 2012, 26(2): 307-314. DOI: 10.1038/eye.2011.282.
34. Roisman L, Magalhaes FP, Lavinsky D, et al. Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial[J]. Ophthalmic Surg Lasers Imaging Retina, 2013, 44(5): 465-470. DOI: 10.3928/23258160-20130909-08.
35. Chen SN, Hwang JF, Tseng LF, et al. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage[J]. Ophthalmology, 2008, 115(12): 2229-2234. DOI: 10.1016/j.ophtha.2008.08.026.
36. Ricci F, Missiroli F, Regine F, et al. Indocyanine green enhanced subthreshold diode-laser micropulse photocoagulation treatment of chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(5): 597-607. DOI: 10.1007/s00417-008-1014-1.
37. Malik KJ, Sampat KM, Mansouri A, et al. Low-intensity/high-density subthreshold microPulse diode laser for chronic central serous chorioretinopathy[J]. Retina, 2015, 35(3): 532-536. DOI: 10.1097/IAE.0000000000000285.
38. Rodanant N, Friberg TR, Cheng L, et al. Predictors of drusen reduction after subthreshold infrared (810 nm) diode laser macular grid photocoagulation for nonexudative age-related macular degeneration[J]. Am J Ophthalmol, 2002, 134(4): 577-585. DOI: 10.1016/S0002-9394(02)01691-4.
39. Friberg TR, Musch DC, Lim JI, et al. Prophylactic treatment of age-related macular degeneration report number 1: 810-nanometer laser to eyes with drusen. Unilaterally eligible patients[J]. Ophthalmology, 2006, 113(4): 621-622. DOI: 10.1016/j.ophtha.2005.10.066.
40. Luttrull JK, Chang DB, Margolis BW, et al. Laser resensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications[J]. Retina, 2015, 35(6): 1184-1194. DOI: 10.1097/IAE.0000000000000458.
41. Johnson TM, Glaser BM. Micropulse laser treatment of retinal-choroidal anastomoses in age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2005, 243(6): 570-575. DOI: 10.1007/s00417-004-1082-9.
42. Park H. Subthreshold micropulse yellow laser (577 nm) photocoagulation for subfoveal serous pigment epithelium detachment[J]. Acta Ophthalmol, 2015, 93 Suppl 1: S255. DOI: 10.1111/j.1755-3768.2015.0302.
43. Luttrull JK, Musch DC, Spink CA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy[J]. Eye (Lond), 2008, 22(5): 607-612. DOI: 10.1038/eye.2008.416.
44. Luttrull JK. Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa[J]. Eye (Lond), 2018, 32(6): 1099-1110. DOI: 10.1038/s41433-018-0017-3.
45. Valdés-Lara CA, Crim N, García-Aguirre G, et al. Micropulse laser for persistent optic disc pit maculopathy: a case report[J]. Am J Ophthalmol Case Rep, 2018, 10: 282-284. DOI: 10.1016/j.ajoc.2018.04.002.
46. Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. DOI: 10.1097/IAE.0b013e3182993edc.
47. Yu AK, Merrill KD, Truong SN, et al. The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2216-2224. DOI: 10.1167/iovs.12-11382.
48. Luttrull JK, Sinclair SH. Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity[J]. Retina, 2014, 34(10): 2010-2020. DOI: 10.1097/IAE.0000000000000177.
49. Kernt M, Cheuteu RE, Cserhati S, et al. Pain and accuracy of focal laser treatment for diabetic mac- ular edema using a retinal navigated laser (Navilas)[J]. Clin Ophthalmol, 2012, 6: 289-296. DOI: 10.2147/OPTH.S27859.
50. Liegl R, Langer J, Seidensticker F, et al. Comparative evaluation of combined navigated laser photocoagulation and intravitreal ranibizumab in the treatment of diabetic macular edema[J/OL]. PLoS One, 2014, 9(12): 113981[2014-12-26]. https://doi.org/10.1371/journal.pone.0113981. DOI: 10.1371/journal.pone.0113981.
51. Barteselli G, Kozak I, El-Emam S, et al. 12-month results of the standardised combination therapy for diabetic macular oedema: intravitreal bevacizumab and navigated retinal photocoagulation[J]. Br J Ophthalmol, 2014, 98(8): 1036-1041. DOI: 10.1136/bjophthalmol-2013-304488.
52. Yazdani SO, Golestaneh AF, Shafiee A, et al. Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human schwann cells in vitro[J]. J Photochem Photobiol B, 2012, 107: 9-13. DOI: 10.1016/j.jphotobiol.2011.11.001.
53. Salem W, Fraser-Bell S, Gillies M. Clinical development of new treatments for diabetic macular oedema[J]. Clin Exp Optom, 2012, 95(3): 297-305. DOI: 10.1111/j.1444-0938.2012.00723.x.