中华眼底病杂志

中华眼底病杂志

普罗布考对高糖培养人视网膜Müller细胞特化蛋白1/细胞骨架相关蛋白/核因子E2相关因子2/半胱氨酸连接酶催化亚基表达的影响

查看全文

目的观察普罗布考对高糖环境下人视网膜Müller细胞中特化蛋白1(SP1)/细胞骨架相关蛋白(Keap1)/核因子E2相关因子2(Nrf2)/半胱氨酸连接酶催化亚基(GCLC)表达的影响;初步探讨普罗布考的抗氧化作用。方法体外培养的人Müller细胞分为正常糖组(5.5 mmol/L)、高糖组(25.0 mmol/L)、正常糖+普罗布考组、高糖+普罗布考组;后两组中加入100 μmol/L普罗布考。免疫荧光染色法鉴定Müller细胞;免疫荧光染色法和实时RP-PCR(qRT-PCR)检测各组Müller细胞中SP1、Keap1、Nrf2、GCLC蛋白、mRNA的表达。两组间数据比较采用独立样本t检验。结果体外培养的人Müller细胞谷氨酰胺合成酶染色阳性率>95%。免疫荧光染色结果显示,Müller细胞中SP1、Keap1、Nrf2、GCLC蛋白均呈阳性表达。qRT-PCR结果显示,与正常糖组比较,高糖组Müller细胞中SP1(t=28.30,P<0.000)、Keap1(t=5.369,P=0.006)、Nrf2(t=10.59,P=0.001)mRNA表达显著上调,GCLC显著下调(t=4.633,P=0.010),差异均有统计学意义。与高糖组比较,高糖+普罗布考组Müller细胞中SP1(t=12.60,P=0.000)、Keap1(t=4.076,P=0.015)mRNA表达显著下调,Nrf2(t=12.90,P=0.000)、GCLC(t=15.96,P<0.000)mRNA表达显著上调,差异均有统计学意义。结论普罗布考通过抑制高糖诱导Müller细胞中SP1、Keap1的表达,上调Müller细胞中Nrf2、GCLC的表达,发挥抗氧化作用。

ObjectiveTo observe the expression of probucol on high glucose-induced specificity protein 1(SP1), kelchlike ECH associated protein1 (Keap1), NF-E2-related factor 2 (Nrf2) and glutamate-cysteine ligase catalytic (GCLC) in the cultured human müller cells and preliminary study the antioxidation of the probucol on müller cells.MethodsPrimary cultured human müller cells were randomly divided into four groups: normoglycaemia group (5.5 mmol/L glucose), normoglycaemia with probucol group (5.5 mmol/L glucose+100 μmol/L probucol), hyperglycemia group (25.0 mmol/L glucose), hyperglycemia with probucol group (25.0 mmol/L glucose + 100 μmol/L probucol). Immunofluorescence staining was used to assess distribution of SP1, Keap1, Nrf2, GCLC in human Müller cells. SP1, Keap1, Nrf2 and GCLC messenger RNA (mRNA) expression was evaluated by quantitative real-time RT-PCR (qRT-PCR). Independent sample t test was used to compare the data between the two groups.ResultsAll müller cells expressed glutamine synthetase (>95%), which confirmed the cultured cells in vitro were the purification of generations of müller cells. The expressions of SP1, Keap1, Nrf2, and GCLC protein were positive in human müller cells. qRT-PCR indicated that SP1 (t=28.30, P<0.000), Keap1 (t=5.369, P=0.006), and Nrf2 (t=10.59, P=0.001) mRNA in the hyperglycemia group increased obviously compared with the normoglycaemia group; GCLC (t=4.633, P=0.010) mRNA in the hyperglycemia group decreased significantly compared with the normoglycaemia group. However, SP1 (t=12.60, P=0.000) and Keap1 (t=4.076, P=0.015) in the hyperglycemia with probucol group decreased significantly compared with the hyperglycemia group; Nrf2 (t=12.90, P=0.000) and GCLC (t=15.96, P<0.000) mRNA in the hyperglycemia with probucol group increased obviously compared with with the hyperglycemia group.ConclusionProbucol plays an antioxidant role by inhibiting the expression of SP1, Keap1 and up-regulating the expression of Nrf2, GCLC in müller cells induced by high glucose.

关键词: 普罗布考/治疗应用; Sp1转录因子; NF-E2相关因子2; 谷氨酸-半胱氨酸连接酶; Müller细胞; 细胞骨架相关蛋白

Key words: Probucol/therapeutic use; Sp1 transcription factor; NF-E2-related factor 2; Glutamate-cysteine ligase; Müller cell; Kelchlike ECH assoiated protein1

引用本文: 李陈香, 艾诗蓓, 陈忠平, 周旭霞. 普罗布考对高糖培养人视网膜Müller细胞特化蛋白1/细胞骨架相关蛋白/核因子E2相关因子2/半胱氨酸连接酶催化亚基表达的影响. 中华眼底病杂志, 2019, 35(2): 187-191. doi: 10.3760/cma.j.issn.1005-1015.2019.02.015 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J/OL]. J Glob Health, 2018, 8(1): 010803[2018-06-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997368/. DOI: 10.7189/jogh.08.010803.
2. Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial[J]. Diabetes Complications, 2016, 30(4): 723-727. DOI: 10.1016/j.jdiacomp.2016.01.003.
3. Vecino E, Rodriguez FD, Ruzafa N, et al. Glia-neuron interactions in the mammalian retina[J]. Prog Retin Eye Res, 2016, 51: 1-40. DOI: 10.1016/j.preteyeres.2015.06.003.
4. Vellanki S, Ferrigno A, Alanis Y, et al. High glucose and glucose deprivation modulate Müller cell viability and VEGF secretion[J]. Int J Ophthalmol Eye Sci, 2016, 4(2): 178-183.
5. Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress[J]. Life Sci, 2018, 193: 20-33. DOI: 10.1016/j.lfs.2017.12.001.
6. Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling[J]. Life Sci, 2018, 207: 212-218. DOI: 10.1016/j.lfs.2018.06.005.
7. Zhong Q, Mishra M, Kowluru RA. Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 3941-3948. DOI: 10.1167/iovs.13-11598.
8. Shelton P, Jaiswal AK. The transcription factor NF-E2-related factor 2(Nrf2): a protooncogene?[J]. FASEB J, 2013, 27(2): 414-423. DOI: 10.1096/fj.12-217257.
9. 胡崇宇, 李雅嘉, 王晨旭, 等. 普罗布考联合胰激肽原酶治疗老年糖尿病周围神经病变的临床效果[J]. 中国老年学杂志, 2018, 38(5): 1034-1036. DOI: 10.3969/j.issn.1005-9202.2018.05.004.Hu CY, Li WJ, Wang CX, et al. The clinical effect of probucol combined with pancreatic kininogenase in the treatment of senile diabetic peripheral neuropathy[J]. Chinese Journal of Gerontology, 2018, 38(5): 1034-1036. DOI: 10.3969/j.issn.1005-9202.2018.05.004.
10. Duan SB, Liu GL, Wang YH, et al. Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats[J]. Ren Fail, 2012, 34(10): 1244-1251. DOI: 10.3109/0886022X.2012.718711.
11. Müller D, Schopp P, Melchinger AE. Selection on expected maximum haploid breeding values can increase genetic gain in recurrent genomic selection[J]. G3(Bethesda), 2018, 8(4): 1173-1181. DOI: 10.1534/g3.118.200091.
12. 王心蕊, 王越晖, 辛颖, 等. Müller细胞在高血糖状态下的变化对维持视网膜结构与功能的影响[J]. 中国临床康复, 2003, 7(24): 3294-3295. DOI: 10.3321/j.issn:1673-8225.2003.24.002.Wang XR, Wang YH, Xin Y, et al. Effects of high glucose on ultrastructure of Müller cells and structure and function of retina[J]. Chinese Journal of Clinical Rehabilitation, 2003, 7(24): 3294-3295. DOI: 10.3321/j.issn:1673-8225.2003.24.002.
13. Di Marco E, Jha JC, Sharma A, et al. Are reactive oxygen species still the basis for diabetic complications?[J]. Clin Sci (Lond), 2015, 129(2): 199-216. DOI: 10.1042/CS20150093.
14. Batliwala S, Xavier C, Liu Y, et al. Involvement of Nrf2 in ocular diseases[J]. Oxid Med Cell Longev, 2017, 2017: 1703810. DOI: 10.1155/2017/1703810.
15. Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta, 2018, 1865(5): 721-733. DOI: 10.1016/j.bbamcr.2018.02.010.
16. Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy[J]. Expert Rev Mol Med, 2009, 11: 13. DOI: 10.1017/S1462399409001057.
17. Guo D, Wu B, Yan J, et al. A possible gene silencing mechanism: hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells[J]. Biochem Biophys Res Commun, 2012, 428(1): 80-85. DOI: 10.1016/j.bbrc.2012.10.010.
18. Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression[J]. Free Radic Biol Med, 2014, 75: 129-139. DOI: 10.1016/j.freeradbiomed.2014.07.001.
19. Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7256-7265. DOI: 10.1167/iovs.14-15193.
20. Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions[J]. Life Sci, 2005, 76(9): 1051-1060. DOI: 10.1016/j.lfs.2004.10.017.
21. Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy[J]. Diabetes, 2009, 58(1): 227-234. DOI: 10.2337/db08-1025.
22. Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2[J]. Free Radic Biol Med, 2017, 103: 155-164. DOI: 10.1016/j.freeradbiomed.2016.12.030.
23. Fu H, Li G, Liu C, et al. Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits[J]. J Cardiovasc Electrophysiol, 2015, 26(2): 211-222. DOI: 10.1111/jce.12540.
24. Zhu H, Jin X, Zhao J, et al. Probucol protects against atherosclerosis through lipid-lowering and suppressing immune maturation of CD11c+ dendritic cells in STZ-induced diabetic LDLR-/-mice[J]. J Cardiovasc Pharmacol, 2015, 65(6): 620-627. DOI: 10.1097/FJC.0000000000000234.
25. Ishitobi T, Hyogo H, Tokumo H, et al. Efficacy of probucol for the treatment of non-alcoholic steatohepatitis with dyslipidemia: An open-label pilot study[J]. Hepatol Res, 2014, 44(4): 429-435. DOI: 10.1111/hepr.12135.
26. Agardh E, Hultberg B, Agardh C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats[J]. Curr Eye Res, 2000, 21(1): 543-549. DOI: 10.1076/0271-3683(200007)2111-ZFT543.
27. 陈忠平, 张入铭. 普罗布考治疗高血脂非增生型糖尿病视网膜病变疗效观察[J]. 中华眼底病杂志, 2012, 28(5): 477-481. DOI: 10.3760/cma.j.issn.1005-1015.2012.05.011.Chen ZP, Zhang RM. Probucol for non-proliferative diabetic retinopathy with hyperlipidemia[J]. Chin J Ocul Fundus Dis, 2012, 28(5): 477-481. DOI: 10.3760/cma.j.issn.1005-1015.2012.05.011.
28. 陈忠平, 唐仕波, 王启常, 等. 普罗布考辅助治疗高血脂糖尿病黄斑水肿的临床观察[J]. 中华眼底病杂志, 2013, 29(5): 490-494. DOI: 10.3760/cma.j.issn.1005-1015.2013.05.011.Chen ZP, Tang SB, Wang QC. Clinical study of probucol in the treatment of hyperlipidemia diabetic macular edema[J]. Chin J Ocul Fundus Dis, 2013, 29(5): 490-494. DOI: 10.3760/cma.j.issn.1005-1015.2013.05.011.