中华眼底病杂志

中华眼底病杂志

2型糖尿病患者糖尿病视网膜病变危险评估模型的建立和初步验证

查看全文

目的建立并初步验证2型糖尿病(T2DM)患者糖尿病视网膜病变(DR)发生的危险评估模型。方法回顾性病例分析。2016年1月至2017年12月在南方医科大学住院治疗的T2DM患者753例纳入研究。患者均行散瞳眼底彩色照相以及空腹血糖、糖化血红蛋白(HbA1c)、总胆红素(TB)、血小板、总胆固醇、甘油三酯、高密度脂蛋白胆固醇(HDL-c)、低密度脂蛋白胆固醇、载脂蛋白A(apoA)、载脂蛋白B、血肌酐、血尿素(BUN)、血尿酸、纤维蛋白原(Fg)、肾小球滤过率等实验室检查。随机将患者分为模型组、验证组,分别为702、51例。根据眼底彩色照相结果,将模型组患者再分为DR组、非DR(NDR)组。采用多因素logistic回归分析筛选出DR发生的危险因素;根据相关危险因素的回归系数建立回归方程即DR危险评估模型,受试者工作特征曲线(ROC曲线)确定方程的曲线下面积(AUC),以约登指数最大为标准确定回归方程的诊断临界值。Hosmer-Lemeshow拟合优度检验对模型的拟合效能进行检验。验证组对DR危险评估模型的可行性进行评估。结果702例中,NDR组、DR组分别为483例(68.8%)、219例(31.2%)。DR危险因素最佳临界值分别为糖尿病病程4.5年、TB 6.65 μmol/L、apoA≥1.18 g/L、BUN≥6.46 mmol/L、HbA1c 7.75%、HDL-c<1.38 mmol/L、糖尿病肾病、Fg 2.94 g/L,其危险因素评分分别为4、2、2、1、2、2、3、1分。多因素logistic回归分析结果显示,糖尿病病程(β=1.272,OR=3.569,95%CI 2.283~5.578,P<0.001)、TB(β=0.744,OR=2.104,95%CI 1.404~3.152,P<0.001)、BUN(β=0.401,OR=1.494,95%CI 0.996~2.240,P=0.052)、HbA1c(β=0.545,OR=1.724,95%CI 1.165~2.55,P=0.006)、HDL-c(β=0.666,OR=1.986,95%CI 1.149~3.298,P=0.013)、糖尿病肾病(β=1.151,OR=3.162,95%CI 2.080~4.806,P=0.013)、Fg(β=0.333,OR=1.396,95%CI 0.945~2.061,P=0.094)为DR发生的相关危险因素。DR危险评估模型为P=1/[1+exp−(−3.799+1.272X1+0.744X2+0.769X3+0.401X4+0.545X5+0.666X6+1.151X7+0.333X8)]。其中:X1=病程,X2=TB,X3=apoA,X4=BUN,X5=HbA1c,X6=HDL-c,X7=糖尿病肾病,X8=Fg。DR患者AUC为0.787。Hosmer-Lemeshow拟合优度检验均满意(χ2=10.125,df=8,P=0.256)。将验证组患者相关因素代入DR危险评估模型,AUC为0.869,标准误为0.63,95%CI为0.745~0.994,P=0.001;Hosmer-Lemeshow拟合优度检验均满意(χ2=5.345,df=7,P=0.618)。结论DR危险评估模型评估DR的AUC为0.787;T2DM患者DM病程、TB、BUN、HbA1c、HDL-c、糖尿病肾病、apoA、Fg是发生DR的独立危险因素。

ObjectiveTo establish an appropriate diabetic retinopathy (DR) risk assessment model for patients with type 2 diabetes mellitus (T2DM).MethodsA retrospective clinical analysis. From January 2016 to December 2017, 753 T2DM patients in the Third Affiliated Hospital of Southern Medical University were analyzed retrospectively. Digital fundus photography was taken in all patients. Fasting plasma glucose (FPG), HbA1c, total bilirubin (TB), blood platelet, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), apolipoprotein-A (apoA), apolipoprotein-B (apoB), serum creatinine, blood urea nitrogen (BUN), blood uric acid, fibrinogen (Fg), estimated glomerular filtration (eGFR) were collected. The patients were randomly assigned to model group and testify group, each had 702 patients and 51 patients respectively. Logistic regression was used to screen risk factors of DR and develop an assessment scale that can be used to predict DR. Goodness of fit was examined using the Hosmer-Lemeshow test and the area under the receiver operating characteristic (ROC) curve.ResultsAmong 702 patients in the model group, 483 patients were DR, 219 patients were NDR. The scores for DR risk were duration of diabetes ≥4.5 years, 4 points; total bilirubin <6.65 mol/L, 2 points; apoA≥1.18 g/L, 2 points; blood urea≥6.46 mmol/L, 1 points; HbA1c ≥7.75%, 2 points; HDL-c<1.38 mmol/L, 2 points; diabetic nephropathy, 3 points; fibrinogen, 1 point. The area under the receiver operating characteristic curve was 0.787. The logistic regression analysis showed that the risk factors independently associated with DR were duration of diabetes (β=1.272, OR=3.569, 95%CI 2.283−5.578, P<0.001), TB (β=0.744, OR=2.104, 95%CI 1.404−3.152, P<0.001, BUN (β=0.401, OR=1.494, 95%CI 0.996−2.240, P=0.052), HbA1c (β=0.545, OR=1.724, 95%CI 1.165−2.55, P=0.006), HDL-c (β=0.666, OR=1.986, 95%CI 1.149−3.298, P=0.013), diabetic nephropathy (β=1.151, OR=3.162, 95%CI 2.080−4.806, P=0.013), Fg (β=0.333, OR=1.396, 95%CI 0.945−2.061, P=0.094). The risk model was P=1/[1+exp−(−3.799+1.272X1+0.744X2+0.769X3+0.401X4+0.545X5+0.666X6+1.151X7+0.333X8)]. X1= duration of diabetes, X2=TB, X3=apoA, X4=BUN, X5=HbA1c, X6=HDL-c, X7=diabetic nephropathy, X8=Fg. The area under the ROC curve was 0.787 and the Hosmer-Lemeshow test suggested excellent agreement (χ2=10.125, df=8, P=0.256) in model group. The area under the ROC curve was 0.869 and the Hosmer-Lemeshow test suggested excellent agreement (χ2=5.345, df=7, P=0.618) in model group.ConclusionThe area under the ROC curve for DR was 0.787. The duration of diabetes, TB, BUN, HbA1c, HDL-c, diabetic nephropathy, apoA, Fg are the risk factors of DR in T2DM patients.

关键词: 糖尿病视网膜病变/预防和控制; 模型,统计学; 预测

Key words: Diabetic retinopathy/prevention & control; Models, statistical; Forecasting

引用本文: 段春文, 安美霞, 刘彦利, 刘祎, 许汉春, 汪艳芳, 郑亚蓉. 2型糖尿病患者糖尿病视网膜病变危险评估模型的建立和初步验证. 中华眼底病杂志, 2019, 35(2): 150-155. doi: 10.3760/cma.j.issn.1005-1015.2019.02.009 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 中华医学会眼科学分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.Chinese Ocular Fundus Diseases Society, Chinese Ophthalmological Society, Chinese Medical Association. Guidelines for clinical diagnosis and treatment of diabetic retinopathy in China[J]. Chin J Ophthalmol, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.
2. Wang D, Ding X, He M, et al. Use of eye care services among diabetic patients in urban and rural China[J]. Ophthalmology, 2010, 117(9): 1755-1762. DOI: 10.1016/j.ophtha.2010.01.019.
3. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.Chinese Diabetes Society, Chinese Medical Association. Standards of care for type 2 diabetes in China(2017)[J]. Chin J Diabetes Mellitus, 2018, 10(1): 4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.
4. Kowalski A, Krikorian A, Lerma EV. Diabetic nephropathy for the primary care provider: new understandings on early detection and treatment[J]. Ochsner J, 2014, 14(3): 369-379.
5. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie house classification. ETDRS report number 10[J]. Ophthalmology, 1991, 98(5 Suppl): S786-806.
6. 姚晨, 陈峰.临床试验研究设计[M]//孙振球, 徐勇勇.医学统计学.4版.北京: 人民卫生出版社, 2014: 599-602.Yao C, Chen F.Clinical trail and study design[M]//Sun ZQ, Xu YY.Medical statistics.4th ed. Beijing: People's Medical Publishing House, 2012: 599-602.
7. Fox CS, Golden SH, Anderson C, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association[J]. Diabetes Care, 2015, 38(9): 1777-1803. DOI: 10.2337/dci15-0012.
8. Raman R, Gupta A, Kulothungan V, et al. Prevalence and risk factors of diabetic retinopathy in subjects with suboptimal glycemic, blood pressure and lipid control: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetic study (SN-DREAMS, Report 33)[J]. Curr Eye Res, 2012, 37(6): 513-523. DOI: 10.3109/02713683.2012.669005.
9. Voigt M, Schmidt S, Lehmann T, et al. Prevalence and progression rate of diabetic retinopathy in type 2 diabetes patients in correlation with the duration of diabetes[J]. Exp Clin Endocrinol Diabetes, 2018, 126(9): 570-576. DOI: 10.1055/s-0043-120570.
10. Sabanayagam C, Yip W, Ting DS, et al. Ten emerging trends in the epidemiology of diabetic retinopathy[J]. Ophthalmic Epidemiol, 2016, 23(4): 209-222. DOI: 10.1080/09286586.2016.1193618.
11. 刘玉成.临床常用生物化学检测[M]//陈文彬, 潘祥林, 康熙雄, 等.诊断学.7版.北京: 人民卫生出版社, 2012: 382-383.Liu YC.Common clinical biochemical tests[M]//Chen WB, Pan XL, Kang XX, et al. Diagnostics.7th ed.Beijing: People's Medical Publishing House, 2012: 382-383.
12. American Diabetes Association. Standards of medical care in diabetes--2010[J]. Diabetes Care, 2010, 33 Suppl 1: S11-61. DOI: 10.2337/dc10-S011.
13. Toth PP, Simko RJ, Palli SR, et al. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus[J]. Cardiovasc Diabetol, 2012, 11: 109. DOI: 10.1186/1475-2840-11-109.
14. Ankit BS, Mathur G, Agrawal RP, et al. Stronger relationship of serum apolipoprotein A-1 and B with diabetic retinopathy than traditional lipids[J]. Indian J Endocrinol Metab, 2017, 21(1): 102-105. DOI: 10.4103/2230-8210.196030.
15. Chang YC, Wu WC. Dyslipidemia and diabetic retinopathy[J]. Rev Diabet Stud, 2013, 10(2-3): 121-132. DOI: 10.1900/RDS.2013.10.121.
16. Maranhão RC, Carvalho PO, Strunz CC, et al. Lipoprotein (a): structure, pathophysiology and clinical implications[J]. Arq Bras Cardiol, 2014, 103(1): 76-84.
17. Maioli M, Tonolo G, Pacifico A, et al. Raised serum apolipoprotein (a) in active diabetic retinopathy[J]. Diabetologia, 1993, 36(1): 88-90. DOI: 10.1007/BF00399100.
18. Behl T, Velpandian T, Kotwani A. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy[J]. Vascul Pharmacol, 2017, 92: 1-5. DOI: 10.1016/j.vph.2017.03.005.
19. Zhong ZL, Han M, Chen S. Risk factors associated with retinal neovascularization of diabetic retinopathy in type 2 diabetes mellitus[J]. Int J Ophthalmol, 2011, 4(2): 182-185. DOI: 10.3980/j.issn.2222-3959.2011.02.15.
20. Zhang G, Chen H, Chen W, et al. Prevalence and risk factors for diabetic retinopathy in China: a multi-hospital-based cross-sectional study[J]. Br J Ophthalmol, 2017, 101(12): 1591-1595. DOI: 10.1136/bjophthalmol-2017-310316.
21. Pedro RA, Ramon SA, Marc BB, et al. Prevalence and relationship between diabetic retinopathy and nephropathy, and its risk factors in the North-East of Spain, a population-based study[J]. Ophthalmic Epidemiol, 2010, 17(4): 251-265. DOI: 10.3109/09286586.2010.498661.
22. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes, 2005, 54(6): 1615-1625. DOI: 10.2337/diabetes.54.6.1615.
23. Ghaffar T, Marwat ZI, Ullah F, et al. Association of serum total bilirubin level with diabetic retinopathy in type 2 diabetes mellitus[J]. J Ayub Med Coll Abbottabad, 2016, 28(3): 537-541.
24. Gogbashian A, Sedrakyan A, Treasure T. EuroSCORE: a systematic review of international performance[J]. Eur J Cardiothorac Surg, 2004, 25(5): 695-700. DOI: 10.1016/j.ejcts.2004.02.022.
25. Azizi-Soleiman F, Heidari-Beni M, Ambler G, et al. Iranian risk model as a predictive tool for retinopathy in patients with type 2 diabetes[J]. Can J Diabetes, 2015, 39(5): 358-363. DOI: 10.1016/j.jcjd.2015.01.290.