中华眼底病杂志

中华眼底病杂志

康柏西普联合577 nm阈值下微脉冲激光光凝治疗糖尿病黄斑水肿的疗效观察

查看全文

目的观察康柏西普联合577 nm阈值下微脉冲激光光凝治疗糖尿病黄斑水肿(DME)的疗效。方法前瞻性临床随机对照研究。2016年6月至2017年6月在中部战区总医院检查确诊的DME患者68例68只眼纳入研究。采用字母随机分组方式将患者分为康柏西普联合577 nm阈值下微脉冲激光组(联合治疗组)、康柏西普组(单纯药物治疗组),分别为36例36只眼、32例32只眼。所有患者均行玻璃体腔注射康柏西普治疗,每一个月1次,连续3次为初始治疗,其后根据每组预先设定的再治疗标准进行按需治疗。采用ETDRS视力表行BCVA检查。采用日本Topcon公司3D-OCT 2000仪测量黄斑中心凹视网膜厚度(CMT)、黄斑体积(TMV)。联合治疗组、单纯药物治疗组患眼BCVA、CMT、TMV分别为(57.9±12.4)个字母、(427.8±129.4)μm、(10.14±1.50)mm3和(59.0±16.0)个字母、(441.0±135.7)μm、(10.43±2.10)mm3,差异均无统计学意义(t=0.321、0.410、0.641,P=0.749、0.683、0.524)。治疗后随访时间≥12个月。对比观察两组患眼康柏西普年平均注射次数以及BCVA、CMT、TMV的变化情况。组内及组间治疗前后BCVA、CMT、TMV比较行重复测量方差分析。结果治疗后12个月,联合治疗组、单纯药物治疗组患眼康柏西普平均注射次数分别为(5.8±1.9)、(8.5±2.4)次,差异有统计学意义(t=5.12,P=0.000)。治疗后3、6、9、12个月,BCVA分别为(64.9±11.1)、(65.6±10.5)、(67.0±10.8)、(66.6±10.7)个字母和(65.7±15.8)、(66.9±15.7)、(66.4±13.0)、(67.3±16.4)个字母;与治疗前BCVA比较,差异均有统计学意义(F=34.234、10.137,P=0.000、000)。CMT分别为(335.2±105.9)、(352.6±106.6)、(336.2±120.8)、(305.9±97.0)μm和(323.9±92.8)、(325.5±90.2)、(327.6±108.2)、(312.2±106.8)μm;TMV分别为(9.20±1.08)、(9.26±1.20)、(9.20±1.63)、(9.05±1.18)mm3和(9.19±1.21)、(9.35±1.69)、(9.09±1.20)、(8.92±1.10)mm3;与治疗前CMT、TMV比较,差异均有统计学意义(FCMT=12.152、12.917,P=0.000、0.000;FTMV=11.198、11.008;P=0.000、0.000)。两组患眼间治疗后不同时间点BCVA、CMT、TMV比较,差异均无统计学意义(F=0.049、0.074、0.009,P=0.826、0.786、0.925)。结论康柏西普联合577 nm阈值下微脉冲激光与康柏西普均可有效降低DME患眼CMT、TMV,提高BCVA;联合治疗可以减少康柏西普的注射次数。

ObjectiveTo observe the effect of conbercept combined with 577 nm subthreshold micropulse laser photocoagulation on diabetic macular edema (DME).MethodsA prospective randomized controlled clinical study. From June 2016 to June 2017, 68 eyes of 68 patients with DME diagnosed in Central Theater Command General Hospital were enrolled in the study. The patients were randomly assigned to two different treatment groups: 36 eyes (36 patients) in the conbercept combined with 577 nm subthreshold micropulse lase group (combined treatment group) and 32 eyes (32 patients) in conbercept group (drug treatment group). All patients received three initial intravitreous injection of conbercept and re-treatment was performed according to the criteria which has been disigned before. BCVA was measured by ETDRS charts. The central macular thickness (CMT), total macular volume (TMV) were measured by Topcon 3D-OCT 2000. The BCVA, CMT and TMV in the combined treatment group and the drug treatment group were 57.9±12.4 letters, 427.8±129.4 μm, 10.14±1.50 mm3 and 59.0±16.0 letters, 441.0 ±135.7 μm, 10.43±2.10 mm3, respectively. There was no significant difference (t=0.321, 0.410, 0.641; P=0.749, 0.683, 0.524). The follow-up period was more than 12 months. The changes of BCVA, CMT and TMV were compared between the two groups. Comparison of BCVA, CMT, TMV before and after treatment in and between groups using repeated measures analysis of variance.ResultsThe average annual injection times was 5.8±1.9 in the combined treatment group and 8.5±2.4 in the drug treatment group. The difference was statistically significant (t=5.12, P=0.000). The BCVA in the 3rd, 6th, 9th and 12th month were 64.9±11.1, 65.6±10.5, 67.0±10.8, 66.6±10.7 letters and 65.7±15.8, 66.9±15.7, 66.4±13.0, 67.3±16.4 letters, respectively, and there were significant differences compared with BCVA before treatment (F=34.234, 10.137; P=0.000, 0.000). The CMT were 335.2±105.9, 352.6±106.6, 336.2±120.8, 305.9±97.0 μm and 323.9±92.8, 325.5±90.2, 327.6±108.2, 312.2±106.8 μm, respectively. The TMV were 9.20±1.08, 9.26±1.20, 9.20±1.63, 9.05±1.18 mm3 and 9.19±1.21, 9.35±1.69, 9.09±1.20, 8.92±1.10 mm3, respectively. Compared with the CMT (F=12.152, 12.917; P=0.000, 0.000) and TMV (F=11.198, 11.008; P=0.000, 0.000) before treatment, the differences were statistically significant.ConclusionConbercept combined with 577 nm subthreshold micropulse laser and conbercept can effectively reduce CMT, TMV and improve BCVA in patients with DME, but combination therapy can reduce the injection times of conbercept.

关键词: 糖尿病视网膜病变/并发症; 黄斑水肿/药物疗法; 血管生成抑制剂/治疗应用; 抗体,单克隆/治疗应用; 激光凝固术

Key words: Diabetic retinopathy/complications; Macular edema/drug therapy; Angiogenesis inhibitors/therapeutic use; Antibodies, monoclonal/therapeutic use; Laser coagulation

引用本文: 李文清, 宋艳萍, 丁琴. 康柏西普联合577 nm阈值下微脉冲激光光凝治疗糖尿病黄斑水肿的疗效观察. 中华眼底病杂志, 2019, 35(2): 129-134. doi: 10.3760/cma.j.issn.1005-1015.2019.02.005 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID Studies[J]. Ophthalmology, 2015, 122(10): 2044-2052. DOI: 10.1016/j.ophtha.2015.06.017.
2. Heier JS, Korobelnik JF, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID Studies[J]. Ophthalmology, 2016, 123(11): 2376-2385. DOI: 10.1016/j.ophtha.2016.07.032.
3. Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase Ⅲ trials: RISE and RIDE[J]. Ophthalmology, 2013, 120(10): 2013-2022. DOI: 10.1016/j.ophtha.2013.02.034.
4. Rajendram R, Fraser-Bell S, Kaines A, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3[J]. Arch Ophthalmol, 2012, 130(8): 972-979.
5. Wang J, Quan Y, Dalal R, et al. Comparison of continuous-wave and micropulse modulation in retinal laser therapy[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4722-4732. DOI: 10.1167/iovs.17-21610.
6. Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review[J]. Curr Diabetes Rev, 2012, 8(4): 274-284. DOI: 10.2174/157339912800840523.
7. Vujosevic S, Martini F, Longhin E, et al. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety[J]. Retina, 2015, 35(8): 1594-1603. DOI: 10.1097/IAE.0000000000000521.
8. Vujosevic S, Martini F, Convento E, et al. Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues[J]. Curr Med Chem, 2013, 20(26): 3267-3271. DOI: 10.2174/09298673113209990030.
9. Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. DOI: 10.5301/ejo.5001000.
10. 孙光丽, 姜静, 王成虎, 等. 高密度微脉冲激光联合玻璃体内注射雷珠单抗治疗糖尿病性黄斑水肿[J]. 眼科新进展, 2017, 37(3): 279-281. DOI: 10.13389/j.cnki.rao.2017.0070.Sun GL, Jiang J, Wang CH, et al. High-density micropulse photocoagulation combined with intravitreal injection of ranibizumab for diabetic macular edema[J]. Rec Adv Ophthalmol, 2017, 37(3): 279-281. DOI: 10.13389/j.cnki.rao.2017.0070.
11. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. DOI: 10.1016/j.ophtha.2016.02.022.
12. Bressler SB, Glassman AR, Almukhtar T, et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema[J]. Am J Ophthalmol, 2016, 164: 57-68. DOI: 10.1016/j.ajo.2015.12.025.
13. Elman MJ, Ayala A, Bressler NM, et al. Intravitreal Ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results[J]. Ophthalmology, 2015, 122(2): 375-381. DOI: 10.1016/j.ophtha.2014.08.047.
14. Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness[J]. Eye (Lond), 2014, 28(12): 1418-1424. DOI: 10.1038/eye.2014.264.
15. Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
16. Roider J, Michaud N, Flotte T, et al. Histology of retinal lesions after continuous irradiation and selective micro-coagulation of the retinal pigment epithelium[J]. Ophthalmologe, 1993, 90(3): 274-278.