中华眼底病杂志

中华眼底病杂志

传统激光光凝与阈值下微脉冲激光光凝对增生型糖尿病视网膜病变玻璃体液中血管内皮生长因子、白细胞介素-33及一氧化氮浓度的影响

查看全文

目的观察传统激光与阈值下微脉冲激光光凝对增生型糖尿病视网膜病变(PDR)患眼玻璃体液中VEGF、IL-33、一氧化氮(NO)浓度的影响。方法病例对照研究。2015年11月在中部战区总医院眼科临床检查确诊的PDR患者39例39只眼和特发性黄斑皱褶(IMP)患者11例11只眼纳入研究。依据就诊顺序按照随机排列表方法将PDR患者分为氪激光治疗组(A组)、阈值下微脉冲激光治疗组(B组)、未行任何激光治疗组(C组),分别为15、13、11只眼。IMP患者作为对照组(D组)。4组患者年龄(F=0.53,P=0.23)、性别构成(χ2=0.55,P=0.91)、体重指数(F=2.62,P=0.07)、糖尿病病程(F=0.29,P=0.75)、糖化血红蛋白(F=1.72,P=0.19)比较,差异均无统计学意义。PDR患眼激光光凝治疗前均行FFA检查。所有患眼均行常规经睫状体平坦部三切口25G 玻璃体切割手术;手术中抽取患眼玻璃体液,二喹啉甲酸法检测总蛋白浓度,ELISA测定玻璃体液中VEGF、IL-33、NO浓度。结果A、B、C、D组总蛋白浓度比较,差异无统计学意义(F=1.78,P=0.17)。与C组VEGF浓度比较,A、B组均降低,差异有统计学意义(F=7.84,P=0.00)。与C组IL-33浓度比较,A组升高(t=4.15,P=0.02),B组无差异(t=1.34,P=0.20);A组IL-33浓度高于B组,差异有统计学意义(t=3.89,P=0.00)。与D组NO浓度比较,A、B、C组均升高,差异有统计学意义(F=38.42,P<0.001);A、B、C组间差异无统计学意义(F=3.29,P=0.06)。结论传统激光与阈值下微脉冲激光光凝均可降低PDR患眼玻璃体液中VEGF浓度,且阈值下微脉冲激光光凝引起更少的IL-33表达。

ObjectiveTo analyze the expression of VEGF, IL-33 and NO concentration after laser photocoagulation and subthreshold micropulse laser photocoagulation conventional in proliferative diabetic retinopathy (PDR) patients.MethodsA case control study. The clinical data of 39 patients of PDR and 11 patients of idiopathic macular pucker (IMP) from Department of Ophthalmology, Central Theater General Hospital during November 2015 were collected in this study. PDR patients were assigned randomly into three groups. Fifteen PDR patients with 15 eyes were treated with conventional laser as group A. Thirteen PDR patients with 13 eyes were treated with subthreshold micropulse laser as group B. Eleven PDR patients with 11 eyes without any laser therapy were grouped as C. Eleven IMP patients were grouped as D. There was no difference of age (F=0.53, P=0.23), gender ratio (χ2=0.55, P=0.91), body mass index (F=2.62, P=0.07), duration diabetes (F=0.29, P=0.75), glycoslated hemglobin (F=1.72, P=0.19) in four groups. All PDR patients were examined with FFA. Total protein was quantified by a bicinchoninic acid assay kit. Levels of VEGF, IL-33, NO were determined using enzyme-linked immunosorbent assay kits.ResultsThere was no difference of total protein in four groups (F=1.78, P=0.17). Group C had a higher VEGF level than group A and B (F=7.84, P=0.002). Group A had a higher IL-33 level than group C (t=4.15, P=0.02). There was no difference of IL-33 level in group B and C (t=1.34, P=0.20). Group D had a lower NO level than group A, B, C (F=38.42, P<0.001). There was no difference of NO level in group A, B and C (F=3.29, P=0.06).ConclusionsBoth conventional laser photocoagulation and subthreshold micropulse laser photocoagulation can decrease vitreous VEGF level and subthreshold micropulse laser photocoagulation can induce less IL-33 level.

关键词: 糖尿病视网膜病变/治疗; 激光凝固术; 血管内皮生长因子类; 白细胞介素类; 一氧化氮

Key words: Diabetic retinopathy/therapy; Laser coagulation; Vascular endothelial growth factors; Interleukins; Nitric oxide

引用本文: 连海燕, 陈晓, 丁琴, 闫明, 黄珍, 晏颖, 宋艳萍. 传统激光光凝与阈值下微脉冲激光光凝对增生型糖尿病视网膜病变玻璃体液中血管内皮生长因子、白细胞介素-33及一氧化氮浓度的影响. 中华眼底病杂志, 2019, 35(2): 124-128. doi: 10.3760/cma.j.issn.1005-1015.2019.02.004 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Klein R, Davis MD, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: a comparison of retinopathy in younger and older onset diabetic persons[J]. Adv Exp Med Biol, 1985, 189: 321-335. DOI: 10.1007/978-1-4757-1850-8.
2. Matri KE, Chebbi Z, Falfoul Y, et al. Treatment of diabetic macular edema with micropulse laser therapy[J]. Acta Ophthalmol, 2017, 95 Suppl 259: S1. DOI: 10.1111/j.1755-3768.2017.0F031.
3. Matri LE, Falfoul Y, Chebbi Z, et al. Improvement of diabetic macular edema after micropulse laser therapy[J]. Acta Ophthalmol Scand, 2016, 94 Suppl 256: S1. DOI: 10.1111/j.1755-3768.2016.0535.
4. Barquet LA. Role of VEGF in diseases of the retina[J]. Arch Soc Esp Oftalmol, 2015, 90 Suppl 1: S3-5. DOI: 10.1016/S0365-6691(15)30002-2.
5. Ha JM, Jin SY, Lee HS, et al. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway[J]. Korean J Physiol Pharmacol, 2016, 20(5): 533-538. DOI: 10.4196/kjpp.2016.20.5.533.
6. Choi YS, Choi HJ, Min JK, et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production[J]. Blood, 2009, 114(14): 3117-3126. DOI: 10.1182/blood-2009-02-203372.
7. Chamberlain JJ, Johnson EL, Leal S, et al. Cardiovascular disease and risk management: review of the American diabetes association standards of medical care in diabetes 2018[J]. Ann Intern Med, 2018, 168(9): 640-650. DOI: 10.7326/M18-0222.
8. 陈喆, 张士胜, 朱惠敏. 糖尿病视网膜病变的国际临床分类分析[J]. 国际眼科杂志, 2011, 11(8): 1394-1401. DOI: 10.3969/j.issn.1672-5123.2011.08.025.Chen Z, Zhang SS, Zhu HM. Analysis of international clinical diabetic retinopathy disease severity scale[J]. Int Eye Sci, 2011, 11(8): 1394-1401. DOI: 10.3969/j.issn.1672-5123.2011.08.025.
9. Hwang JU, Sohn J, Moon BG, et al. Assessment of macular function for idiopathic epiretinal membranes classified by spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3562-3569. DOI: 10.1167/iovs.12-9762.
10. Ohkoshi K, Tsuiki E, Kitaoka T, et al. Visualization of subthreshold micropulse diode laser photocoagulation by scanning laser ophthalmoscopy in the retro mode[J]. Am J Ophthalmol, 2010, 150(6): 856-862. DOI: 10.1016/j.ajo.2010.06.022.
11. Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037.
12. Lip PL, Belgore F, Blann AD, et al. Plasma VEGF and soluble VEGF receptor FLT-1 in proliferative retinopathy: relationship to endothelial dysfunction and laser treatment[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2115-2119.
13. Wilson AS, Hobbs BG, Shen WY, et al. Argon laser photocoagulation-induced modification of gene expression in the retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(4): 1426-1434. DOI: 10.1167/iovs.02-0622.
14. Luttrull JK, Sramek C, Palanker D, et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema[J]. Retina, 2012, 32(2): 375-386. DOI: 10.1097/IAE.0b013e3182206f6c.
15. Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
16. Bromberg-White JL, Glazer L, Downer R, et al. Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6472-6480. DOI: 10.1167/iovs.13-12518.
17. Li J, Hu WC, Song H, et al. Increased vitreous chemerin levels are associated with proliferative diabetic retinopathy[J]. Ophthalmologica, 2016, 236(2): 61-66. DOI: 10.1159/000447752.
18. Manaviat MR, Rashidi M, Afkhami-Ardekani M, et al. Effect of pan retinal photocoagulation on the serum levels of vascular endothelial growth factor in diabetic patients[J]. Int Ophthalmol, 2011, 31(4): 271-275. DOI: 10.1007/s10792-011-9448-6.
19. Mohamed TA, Mohamed Sel-D. Effect of pan-retinal laser photocoagulation on plasma VEGF, endothelin-1 and nitric oxide in PDR[J]. Int J Ophthalmol, 2010, 3(1): 19-22. DOI: 10.3980/j.issn.2222-3959.2010.01.05.
20. Itaya M, Sakurai E, Nozaki M, et al. Upregulation of VEGF in murine retina via monocyte recruitment after retinal scatter laser photocoagulation[J]. Invest Ophthalmol Vis Sci, 2007, 48(12): 5677-5683. DOI: 10.1167/iovs.07-0156.
21. Konac E, Sonmez K, Bahcelioglu M, et al. Does pattern scan laser (PASCAL) photocoagulation really induce less VEGF expression in murine retina than conventional laser treatment?[J]. Gene, 2014, 549(1): 156-160. DOI: 10.1016/j.gene.2014.07.062.
22. Riddell JR, Maier P, Sass SN, Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α[J/OL]. PLoS One, 2012, 7(11): 50394[2012-11-21]. https://doi.org/10.1371/journal.pone.0050394. DOI: 10.1371/journal.pone.0050394.
23. Flaxel C, Bradle J, Acott T, et al. Retinal pigment epithelium produces matrix metalloproteinases after laser treatment[J]. Retina, 2007, 27(5): 629-634. DOI: 10.1097/01.iae.0000249561.02567.fd.
24. Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. DOI: 10.1097/IAE.0b013e3182993edc.
25. Arany PR, Nayak RS, Hallikerimath S, et al. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing[J]. Wound Repair Regen, 2007, 15(6): 866-874. DOI: 10.1111/j.1524-475X.2007.00306.x.
26. Szymanska J, Goralczyk K, Klawe JJ, et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion[J]. J Physiol Pharmacol, 2013, 64(3): 387-391.
27. Mandriota SJ, Menoud PA, Pepper MS. Transforming growth factor beta 1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells[J]. J Biol Chem, 1996, 271(19): 11500-11505. DOI: 10.1074/jbc.271.19.11500.
28. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines[J]. Immunol Rev, 2008, 223: 20-38. DOI: 10.1111/j.1600-065X.2008.00624.x.
29. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005, 23(5): 479-490. DOI: 10.1016/j.immuni.2005.09.015.
30. Takeuchi M, Sato T, Tanaka A, et al. Elevated levels of cytokines associated with Th2 and Th17 cells in vitreous fluid of proliferative diabetic retinopathy patients[J/OL]. PLoS One, 2015, 10(9): 137358[2015-09-09]. https://doi.org/10.1371/journal.pone.0137358. DOI: 10.1371/journal.pone.0137358.
31. Shimura M, Yasuda K, Nakazawa T, et al. Panretinal photocoagulation induces pro- inflammatory cytokines and macular thickening in high-risk proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(12): 1617-1624. DOI: 10.1007/s00417-009-1147-x.
32. Han JW, Choi J, Kim YS, et al. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(2): 341-353. DOI: 10.1007/s00417-017-3883-7.
33. Chidlow G, Shibeeb O, Plunkett M, et al. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2319-2332. DOI: 10.1167/iovs.12-11204.
34. Ito A, Hirano Y, Nozaki M, et al. Short pulse laser induces less inflammatory cytokines in the murine retina after laser photocoagulation[J]. Ophthalmic Res, 2015, 53(2): 65-73. DOI: 10.1159/000366520.
35. Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL].J Ophthalmol, 2015, 2015: 729792[2015-11-30]. http://dx.doi.org/10.1155/2015/729792. DOI: 10.1155/2015/729792.
36. Yenari MA, Liu J, Zheng Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection[J]. Ann N Y Acad Sci, 2010, 1053(1): 74-83. DOI: 10.1111/j.1749-6632.2005.tb00012.x.
37. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability[J]. J Cell Sci, 2008, 121(Pt 13): 2115-2122. DOI: 10.1242/jcs.017897.
38. Hernández C, Lecube A, Segura RM, et al. Nitric oxide and vascular endothelial growth factor concentrations are increased but not related in vitreous fluid of patients with proliferative diabetic retinopathy[J]. Diabetic Medicine, 2010, 19(8): 655-660. DOI: 10.1046/j.1464-5491.2002.00768.x.
39. Kulaksizoglu S, Karalezli A. Aqueous humour and serum levels of nitric oxide, malondialdehyde and total antioxidant status in patients with type 2 diabetes with proliferative diabetic retinopathy and nondiabetic senile cataracts[J]. Can J Diabetes, 2016, 40(2): 115-119. DOI: 10.1016/j.jcjd.2015.07.002.
40. Er H, Doganay S, Turkoz Y, et al. The levels of cytokines and nitric oxide in rabbit vitreous humor after retinal laser photocoagulation[J]. Ophthalmic Surg Lasers, 2000, 31(6): 479-483.