中华眼底病杂志

中华眼底病杂志

眼科人工智能技术的现状与问题

查看全文

近年来,人工智能(AI)技术发展迅速,已经成为医学领域的研究前沿热点之一。基于人工神经网络的深度学习算法是其中最具代表性的工具。眼科学的进步有赖于多种影像手段的进步,而AI技术的便捷性和高效性使其在眼科疾病筛查、诊疗以及随访中表现出巨大的应用前景。当前,眼科AI技术的相关研究围绕多病种和多模态两个方面展开,在眼科常见疾病方面已经有许多有价值的成果相继报道。需要强调的是,眼科AI产品在实际应用方面仍然面临一些问题,监管机制和评价标准尚未形成一个完整和统一的体系,在大范围投入临床使用前还有诸多方面亟待优化。眼科AI技术的创新是多学科融合的产物,对我国公共卫生事业具有相当重要的意义,也必将在临床实践中使广大患者获益。

For the past few years, artificial intelligence (AI) technology has developed rapidly and has become frontier and hot topics in medical research. While the deep learning algorithm based on artificial neural networks is one of the most representative tool in this field. The advancement of ophthalmology is inseparable from a variety of imaging methods, and the pronounced convenience and high efficiency endow AI technology with promising applications in screening, diagnosis and follow-up of ophthalmic diseases. At present, related research on ophthalmologic AI technology has been carried out in terms of multiple diseases and multimodality. Many valuable results have been reported aiming at several common diseases of ophthalmology. It should be emphasized that ophthalmic AI products are still faced with some problems towards practical application. The regulatory mechanism and evaluation criteria have not yet integrated as a standardized system. There are still a number of aspects to be optimized before large-scale distribution in clinical utility. Briefly, the innovation of ophthalmologic AI technology is attributed to multidisciplinary cooperation, which is of great significance to China's public health undertakings, and will be bound to benefit patients in future clinical practice.

关键词: 人工智能; 糖尿病视网膜病变; 黄斑变性; 青光眼; 述评

Key words: Artificial intelligence; Diabetic retinopathy; Macular degeneration; Glaucoma; Editorial

引用本文: 陈有信, 张碧磊, 张弘哲. 眼科人工智能技术的现状与问题. 中华眼底病杂志, 2019, 35(2): 119-123. doi: 10.3760/cma.j.issn.1005-1015.2019.02.003 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004.
2. enkatesan R, Chandakkar P, Li B, et al. Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features[C]. International Conference of the IEEE Engineering in Medicine & Biology Society: IEEE, 2012.
3. Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5200-5206. DOI: 10.1167/iovs.16-19964.
4. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969. DOI: 10.1016/j.ophtha.2017.02.008.
5. Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J/OL]. Diabetes Care, 2018, 2018: 1[2018-12-01]. https://www.x-mol.com/paper/837329. DOI: 10.2337/dc18-0147.
6. van der HAA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68. DOI: 10.1111/aos.13613.
7. Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176. DOI: 10.1001/jamaophthalmol.2017.3782.
8. Velezmontoya R, Oliver SCN, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention[J]. Retina, 2014, 34(3): 423-441. DOI: 10.1097/IAE.0000000000000036.
9. ElTanboly A, Ismail M, Shalaby A, et al. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images[J]. Med Phys, 2017, 44(3): 914-923. DOI: 10.1002/mp.12071.
10. Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefe’s Arch Clin Exp Ophthalmol, 2018, 256(2): 259-265. DOI: 10.1007/s00417-017-3850-3.
11. Samina K, Usman AM, Taimur H, et al. Fully automated robust system to detect retinal edema, central serous chorioretinopathy, and age related macular degeneration from optical coherence tomography images[J/OL]. Biomed Res Int, 2017, 2017: 7148245[2017-03-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382397/. DOI: 10.1155/2017/7148245.
12. Sivaswamy J, Krishnadas SR, Chakravarty A, et al. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis[DB]. JSM Biomed Imaging Data, 2015, 2(1): 1004.
13. Hiroki M, Tabuchi H, Nakakura S, et al. Deep-learning classifier with an ultra-wide-field scanning laser ophthalmoscope detects glaucoma visual field severity[J]. J Glaucoma, 2018, 27(7): 1.
14. Varadarajan AV, Ryan P, Katy B, et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2861-2868. DOI: 10.1167/iovs.18-23887.
15. Xiao S, Bucher F, Wu Y, et al. Fully automated, deep learning segmentation of oxygen-induced retinopathy images[J/OL]. Jci Insight, 2017, 2(24): 97585[2017-12-21]. https://www.ncbi.nlm.nih.gov/pmc/?term=10.1172%2Fjci.insight.97585. DOI: 10.1172/jci.insight.97585.
16. Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment[J/OL]. Sci Rep, 2017, 7: 9425[2017-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573327/. DOI: 10.1038/s41598-017-09891-x.
17. Damato B, Eleuteri A, Fisher AC, et al. Artificial neural networks estimating survival probability after treatment of choroidal melanoma[J]. Ophthalmology, 2008, 115(9): 1598-1607. DOI: 10.1016/j.ophtha.2008.01.032.
18. Poplin R, Varadarajan AV, Blumer K, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning[J/OL]. 2017, 2017: 09843[2017-08-21]. https://arxiv.org/abs/1708.09843. DOI: 10.1038/s41551-018-0195-0.
19. O’Bryhim BE, Apte RS, Kung N, et al. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings[J]. JAMA ophthalmol, 2018, 136(11): 1242-1248. DOI: 10.1001/jamaophthalmol.2018.3556.
20. Prentasic P, Loncaric S, Vatavuk Z, et al. Diabetic retinopathy image database(DRiDB): a new database for diabetic retinopathy screening programs research[C]. International Symposium on Image & Signal Processing & Analysis, 2014.